THEORETICAL STRUCTURES FOR PROTONATED METHANE AND PROTONATED ETHANE

W. A. Lathan, W. J. Hehre and J. A. Pople Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

(Received in USA 4 May 1970; received in UK for publication 8 June 1970)

Protonated methane (GH_5^+) and protonated ethane $(G_2H_7^+)$ are of interest as simple models for electrophilic attack on alkanes. We wish to report theoretical structures for these species using <u>ab</u> <u>initio</u> molecular orbital theory with a minimal basis set of Slater-type atomic orbitals.

The actual basis functions are linear combinations of three gaussian functions which are fitted to Slater orbitals by least-squares methods (STO-3G).¹ Standard molecular exponents (ζ -values) were used throughout. All geometrical parameters were varied (subject only to certain symmetry constraints) until the calculated total energy was minimized.

For CH_5^+ , we considered a trigonal bipyramid (D_{3h}) , a square pyramid (C_{4y}) and the less symmetric (C_s) structure shown in the figure (I). The optimum energies were found to be ordered $E(D_{3h}) > E(C_{4v}) > E(C_s)$. For the C_s structure, the geometrical parameters are

r ₁	-	1.098 A	r2	-	1.106 Å	Å
r3	=	1.370 Å	r ₄	=	1.367 Å	4
α	=	140.0°	β	-	83.8°	
0	=	37.2°	ζ	*	117.7°	

This structure corresponds to a rather loose complex between a CH_3^+ ion and a hydrogen molecule. The energy of the C_{4v} structure is about 2 kcal/mole higher. This is an activation energy for hydrogen rearrangement within the ion. These conclusions parallel those of other workers.^{2,3}

No. 31

For $C_2H_7^+$, there is a previous semi-empirical study by Olah, Klopman and Schlosberg,⁴ but without full geometrical variation. We have made a careful study of the two structures illustrated in the figures (II and III). Structuré II (symmetry C_{2v}) corresponds to a protonated C-C bond. Structure III is analogous to the lowest energy form of CH_5^+ and can be considered as a complex between an ethyl cation and a hydrogen molecule (protons 6 and 7). III corresponds to protonation of a C-H bond.

The calculations show that the protonated C-C structure II has the lowest energy (11 kcal/mole below the lowest energy for III). The geometrical parameters for II are

r ₁	= 2.362 A	$r_2 = 1.251 \text{ Å}$
r ₃	= 1.097 Å	$r_4 = 1.094 \text{ Å}$
α	= 52.7°	β = 89.5°
0	= 115.6°	

The bridging proton H₇ is at the vertex of a very flat isosceles triangle with a long C-C distance. This suggests that protonation of alkanes can easily lead to carbon-carbon cleavage.

The optimum structure for III is a very loose $C_2H_5^+-H_2$ complex, the distance r_5 being 2.746 Å. It appears, therefore, that $C_2H_5^+$ has a smaller hydrogen molecule affinity than CH_3^+ , presumably because the additional methyl group donates electrons into the vacant orbital on the carbonium center, making it less available for the electrons of an approaching hydrogen molecule. A number of other structures including methylated versions of the D_{3h} form of CH_5^+ were tested, but not refined. These all led to higher energies. Thus, although the complete potential surface has not been explored, these studies do indicate that the C-C bridged form II is the lowest energy configuration of $C_2H_7^+$. Acknowledgments

This research was supported in part by National Science Foundation Grant GP-9338.

References

- 1. W. J. Hehre, R. F. Stewart and J. A. Pople, J.Chem. Phys. 51, 2657 (1969).
- 2. W. Th. A. M. Van der Lugt and P. Ros, Chem. Phys. Ltrs. 4, 389 (1969).
- 3. H. Kollmar and H..O. Smith, Chem. Phys. Ltrs. 5, 7 (1970).
- 4. G. A. Olah, G. Klopman and R. H. Schlosberg, J.Am. Chem. Soc. 91, 3261 (1969).

ш

2701

I